
1

UNIT A2 1: SYSTEMS METHODOLOGIES

FACTFILE:
GCE SOFTWARE
SYSTEMS DEVELOPMENT

Their Nature and Purpose

Building a software system can be a long and
complicated process with many interdependent
tasks and large teams to manage. This process is
helped by using a software methodology which…

• describes the formal approach that will be used
to manage (plan, monitor and control) the
development of a new software system;

• provides a framework/recipe/plan incorporating
knowledge and wisdom gleamed from years of
software development;

• splits the software development process into a
set of stages/phases;

• these stages are followed in a specified order
through a development lifecycle;

• details the activities to complete within each
stage supported with guidelines, principles,
tools, techniques and documentation;

• helps to improve the quality of the software
system and the software system development
process producing a software system that
is more likely to meet or exceed customer
expectations and be delivered within time and
budget;

A wide variety of such frameworks have evolved
over the years, each with its own recognized
strengths and weaknesses. They vary widely in
philosophy with some being quite specific about
the documentation produced, in their coverage of
the project lifecycle and in the kind of software
projects they are best suited to.

Evolution of the Methodologies
In the 1960’s and early 1970’s attempts to build
large and complex systems were discouraging as
typically they were delivered late, over budget, were
unreliable and difficult to maintain. This period of
time was known as the software crisis. To address
these difficulties a structured approach called the
Waterfall was developed.

Waterfall Model
The Waterfall model (now called the traditional
approach) evolved from the construction industry
and was applied to the development of software.
The phases1 of the software development lifecycle
are followed in a sequential fashion from top to
bottom as in a waterfall. No phase was allowed to
start until the previous phase was complete. Certain
roles (e.g. Customer, Business Analyst, Developer)
are only involved during certain activities.

The main advantages are:

• It is simple and easy to understand: this is
a big advantage for inexperienced developers
in the team as the required activities at each
stage are well defined;

• Project managers found it easy to manage:
there are a clear sequence of activities in each
stage to follow allowing them to easily draw
their Gantt chart and identify milestones for
the end of each stage; it was then easier for
them to cost and control.

But the disadvantages are many and include:
• Cannot accommodate changing

requirements: It is not suitable for projects
where requirements are at a moderate to high

A2.1 Systems Methodologies

1 Note that there are many different versions of the waterfall model. Some use different names for the phases, for example using implementation for
installation. Some add extra stages such feasibility and maintenance to show the full system lifecycle.

2

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

risk of changing and where they are incomplete
or vague. This model is used only when the
requirements are very well known, clear
and fixed which is more likely in small short
projects. It is not good for long and ongoing
projects or complex and object-oriented
projects.

• Limited customer involvement: Customers
are only involved in the early stages to define
requirements and at the end to test the
finished product which increases the risk that
the product may not meet the customer’s
needs.

• Forward direction of flow only: Can only
go forward through the phases so there is no
feedback to guide previous phases.

• Project management is very authoritarian in
style: this does not help support the creativity
of developers or use their skills in the best way.

• Testing performed at end of lifecycle: this
often leads to errors discovered later in the
lifecycle which may involve new design and
cost more to change at this stage than if they
were discovered at an earlier stage.

• Working software is delivered late in the
lifecycle: Customers will not know whether
the right product is being built and it is hard to
gauge progress.

• Integration is performed at end in a ‘Big
Bang’: which is risky as design problems may
only be uncovered at a late stage which may
cost a lot to fix.

A new approach emerged in the 1990s in response
to these problems called Rapid Application
Development.

Rapid Application Development (RAD)

RAD2 compresses several steps of the waterfall
process into an iterative process using prototyping3
with high user participation. The development
team delivers a series of fully functional prototypes
to the users who evaluate the prototype requesting
changes/further refinement. The developers rework
the prototype and the process continues in a cycle
until the software product evolves into the final
working product satisfying the customers.

Several prototypes may be developed in parallel
for different parts of the system. RAD offers the
following advantages:

• Less up-front planning: Prototyping is used
in place of detailed planning and this helps as
often a customer finds it difficult to express
their needs/requirements unless they can
actually see a working model of the system.

• Shortens the lifecycle and enabling
rapid delivery by speeding up design and
implementation. It does this by using special
techniques and tools such as:

- Computer-Aided Software Engineering
(CASE) tools including code generators
which enable the automatic generation of
programs and database code directly from
design documents, diagrams, forms, and
reports. There is less manual coding.

- Joint application design (JAD) sessions:
Users, Managers and Analysts work
together for several days in intensive
workgroup sessions to specify or review
system requirements.

- Fourth generation/visual programming
languages such as Visual Basic.

• The construction can be broken down into
several compartments/modules for which
separate prototypes can be developed in
parallel.

• Prototypes facilitate customer requirements
determination as they can visually see part
of the working system which is good if the
system is covering a new unfamiliar area of the
business where the customer finds it hard to
express their requirements in a written form.

• Changing requirements can be easily
accommodated in the evolving prototypes and
the solution is more likely to meet the needs
of the customer as problems can be discovered
earlier in the process.

• Rapid delivery to the customer with high
levels of customer involvement during the
complete development cycle reduces the risk
of not meeting the customer’s requirements.
Some business environments are so rapidly
changing that by the time the solution is
delivered it could be out of date already. High
customer involvement also encourages the
acceptance of the new system as they are more
familiar with it.

• Progress can be easily seen through the
2 The James Martin version of the lifecycle includes four phases called requirements planning, user design, construction and cutover.
3 The type of prototyping used in RAD is evolutionary as the model develops into the final system but there are many types of prototyping including throw-
away in which the prototype is eventually discarded after use.

3

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

production of working prototypes not just at
the end of the lifecycle, as in the waterfall
model. This reassures the customer.

• There is no big bang integration at end.
There is continuous integration of code.
This reduces the risk of finding out that the
architectural design is wrong at the end of
the project. The design can be restructured at
an early stage if necessary when the cost of
change is less.

But the disadvantages include:

• Less management control: Managing larger
projects is very difficult due to lack of planning.

• Demands more frequent user interaction
throughout project lifecycle and key business
people may find it difficult to make that
commitment as their time is valuable to the
business.

• Requires highly skilled developers and
designers: they must have wide experience
and a large skill set to rapidly respond and
adapt the prototype to customer feedback – no
time for training courses!

• Cost of CASE tools for modelling and
automated code generation is high making it
less suitable for cheaper projects.

• Poor design: the focus on visual prototypes
may result in poor architectural design. There
may also be problems with programming
standards, documentation and maintenance.

• Lack of scalability. RAD typically focuses on
small to medium-sized project teams.

RAD is popular for web and e-commerce systems
which are developed in rapidly changing business
environments.

Agile Methodologies
Agile methodologies were formally introduced in
2001 when the Agile Manifesto was published.

The Agile Manifesto

We are uncovering better ways of
developing software by doing it and helping
others to do it. Through this work we have
come to value:

Individuals and interactions over

processes and tools Working software over
comprehensive documentation Customer
collaboration over contract negotiation
Responding to a change, over following a
plan

That is, while there is value in the items
on the right, we value the items on the left
more.

This manifesto emphasised the difference between
agile and traditional methodologies such as the
Waterfall model. Agile methodologies are strongly
influenced by RAD and prototyping but are more
clearly defined with their own tools and techniques.
They can be used for Object Orientated software
development projects.

Agile methodologies follow the Software
Development lifecycle phases of Analysis, Design,
Implementation, Testing and Installation found in
the Waterfall model but these are performed in an
iterative and incremental manner.

• Incremental means that the system is
broken down into several smaller parts called
increments. Each of these increments works
through the software development lifecycle
and will be released to the customer as a
working subset of the system, frequently.

- These frequent incremental releases allow
the customer to use part of the system at
an early stage of development. This allows
changes to be suggested and progress to
be monitored throughout development
reducing the uncertainty and risk of non-
delivery. Requirements are implemented in
a prioritised fashion enabling the highest
business value to be delivered first and to
deliver on time.

- This is in contrast to the waterfall which
delivers the whole system at the end
at once when change is difficult and
expensive.

• Iterative means that within each development
phase of an increment there is an iterative
cycle. This starts with a vague understanding of
the system but as the development progresses
this understanding evolves and becomes
clearer. So for example we might start with a
set of very high level requirements which are
quite broad and general. We then produce
prototypes (performing analysis, design, code

4

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

and testing) for the customer to evaluate
and using their feedback we can produce a
more refined prototype as we have a more
detailed and clearer understanding of their
requirements.

- These iterative cycles enable agile projects
to respond to rapidly changing customer
requirements as there are frequent
opportunities for early feedback.

It may be more difficult to estimate how long
each stage will take when the system is in the
early stages of development so planning is
more difficult, especially in large projects,
but outline plans will evolve and change as the
system develops.

- In contrast the waterfall model requires
that requirements are defined up front
early in the project – they assume that
we have all the necessary information to
create detailed plans. This may be difficult
in certain types of project which use novel
technologies or for new business areas
with uncertain requirements and where the
customer has little understanding of their
needs without further exploration.

Agile methodologies are both incremental AND
iterative.

The project is broken down into several parts at
different levels.

- A project is broken down into increments
(also called releases).

- Each increment is broken down into
iterations (also called timeboxes or sprints
depending on the methodology).

- Each iteration is broken down into tasks.

At each level of breakdown there is feedback in an
iterative cycle for example:

- at the end of each increment/release there
is feedback from the customer who uses
part of the system in a live environment
- which helps to plan work for the next
increment.

- at the end of each iteration there is a review
of the work (sprint review and retrospective
in SCRUM) which helps to plan the work in
the next iteration.

- at the end of a daily task there is a stand-
up meeting where feedback is given which
steers the work for the next day.

Within each iteration entire features are
developed and analysis, design, code and test
are ALL performed. These iterations are performed
in timeboxes in DSDM, sprints in XP and simply
iterations in XP.

- testing is performed throughout the
project in contrast to the Waterfall model
when it is only performed at the end of the
lifecycle where defects are more difficult
and costly to resolve.

Other differences between agile and traditional
methodologies include:

• Documentation is minimal and evolves
(documents may be said to be ‘living’). Project
teams spend more time on development and
less on documentation. This is especially
noticeable in the XP agile methodology.
In contrast in the waterfall model the
documentation is extensive and heavyweight.

• Continuous customer/business involvement
from an early stage helps to rapidly and
flexibly respond to changing and evolving
requirements increasing satisfaction and
quality. In contrast the Waterfall model only
involves the user at the beginning and end
of the project which means they have little
opportunity to change the development of the
system; this does mean that scope creep is
minimised but the product may not be what
the customer and the business really needs.

• Teams are encouraged to be self-directing,
pro-active taking initiatives, be co-operative
and collaborative, self-organising and
cross-functional. Project managers should
be respectful, facilitative, supportive and
empowering. Teams will then be more
motivated and produce better results. This
is particularly seen in the SCRUM stand up
meeting where members of the solution team
(there are no designated roles) choose tasks to
complete based on their own particular skills
and the SCRUM Master simply facilitates this
process. In contrast in the Waterfall model
the Project Manager will delegate tasks to the
programmer in an authoritarian manner.

• Face-to-face communication is encouraged:
through the use of stand-up meetings and

5

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

Project Management

As observed from its lifecycle diagram DSDM is the only methodology of the three that covers
the project lifecycle fully from start to finish.5 It details what should be contained in a number of
project level documents6 for example:

• In the PRE-PROJECT phase the Terms of Reference (with objectives, tentative timescale,
available funding and outline of scope) is created.

• In the FEASIBILITY stage the Feasibility Assessment is conducted to determine if the project is
viable. Throwaway prototyping may be used to understand possible solutions.

• In the FOUNDATION stage several outline documents are created including the:

- Business Case: containing business benefits and outline costs.

- Management Approach: with project management activities like risk, communication,
quality, change, and configuration management.

- Solution Architecture Definition: describing for example the computer hardware and
network, security and control.

- Development Approach: for example coding standards and styles, testing strategies.

• In the POST PROJECT stage there is a Project Review document which measures the benefits of
the new project, after a settling in period of say 6-12 months, and compares to those expected
from the business case.

 Note also:

• SCRUM can simply be slotted into DSDM, being wrapped in its extra project level activities if
desired.

• In XP a lot of up-front detailed planning is considered unnecessary and there practically no
documentation. The stories themselves are held to represent the scope which is agreed by the
customer. The design is said to be visible within the structure of the code itself.

facilitated workshops the whole team is
encouraged to use face-to-face communication
instead of documentation as it is more efficient
and misunderstandings can be quickly
addressed. Developers communicate directly
with the customer (who may be collocated
on-site) who play an important role in offering
estimates of work effort for each requirement
so informed decisions on what can worked
on next can be made quickly. In the waterfall
approach the developers and customers are
completely separated and the communication
is largely through documentation created by
the Analyst; this is less responsive, slow, and
open to misinterpretation.

• Continuous Integration: as the product

evolves incrementally the code is continuously
integration rather than at the end in one ‘Big
Bang’.

A Comparison of Three Agile
Methodologies
The agile methodologies called DSDM4 , SCRUM, and
XP implement the agile philosophies and principles
but have a different focus (DSDM: project, business
value; SCRUM: team, empirical; XP: engineering,
technical). Here we compare and contrast these
methodologies by reference to stages within
their lifecycles and their tools and techniques.
Sources for lifecycle diagrams are suggested in the
resources section of this document.

4 DSDM was published in 1995 and evolved into DSDM Atern in 2007 and into DSDM Agile Project Framework in 2014.
5 The whole software development project can be considered as a timebox with a start and end date. XP does have a maintenance and death phase.
6 These are living documents which evolve through the lifecycle which are only outlined at this stage; just provide the minimum information required.

Students will not be expected to know the specific names of these documents but should have an appreciation of their overall content so they know what
happens in this stage of the lifecycle.

6

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

Roles & Teams

In DSDM there are twelve roles from business, project management and technical backgrounds.
Eight are further described below:

• Business Sponsor: responsible for providing the funds and resources; gives the go-ahead to
initiate the project and to move through the feasibility and foundation stages by approving the
Terms of Reference, Business Case and Management Foundations documents; not involved in the
day-to-day details.

• Business Visionary: helps define the high level requirements in the foundations phase making
sure they meet the needs of the business; communicates with stakeholders; approves the
Prioritised Requirements List.

• Business Ambassador: representative of business that will use solution who helps to explore the
requirements further during timeboxed development; day-to-day input.

• Project Manager: coordinates the project as a whole; leaves the detailed planning within a
timebox to the team; produces the Management Foundations document and Delivery Plan.

• Team Leader: co-ordinates the work of the solution development team and ensures the
increments are delivered on time.

• Business Analyst: link between business and solution development team; responsible for
producing the Business Case and Prioritised Requirements List document.

• Solution Developer: develops prototypes and codes solution to be deployed.

• Solution Tester: designs and executes tests, recording results.

In contrast SCRUM is simpler having only three roles:

• Product Owner: A representative from the business. They help define, prioritise and groom the
product backlog to meet their vision for the new system.

• Scrum Master: Guides/facilitates/coaches the team in following the SCRUM methodology helping
to remove any obstacles that might slow progress. This is not a traditional project management
role as he has no authority to exert control over the team;

• Development Team: A collection of people who design, build and test, typically 5-9 in size. There
are no specific designated roles such as programmer, tester, and database administrator as in
traditional projects. Teams self-organise selecting tasks which suit their skills in the daily SCRUM.

In XP there are many roles; four main roles are briefly outlined below:

• On-site Customer: they write user stories and acceptance tests, set priorities and must always be
available to answer questions. This requires a big commitment from the business as the customer
must be permanently on-site.

• Programmer: estimates the effort/cost of each story; breaks stories into tasks; designs unit tests
and then codes.

• Coach: makes sure the project stays on track; trains team members.

• Tracker: monitors programmers taking action if anything goes off track.

Note:

• People can sometimes play more than one role.
• The Business Sponsor + Business Visionary + Business Ambassador in DSDM have similar

responsibilities to the Product Owner in SCRUM and the Customer in XP. 7
• The Team Leader in DSDM is broadly equivalent to the Scrum Master in SCRUM and the Coach +

Tracker in XP.
7 DSDM having a broader range of business representatives has an advantage in that there is less pressure on one person and they will have a broader
 knowledge at all levels of the business, although the Product Owner and Customer do consult with all the stakeholders (end-users, operational staff,
 management, etc). Students should have an appreciation of the difference in the spread of roles available in each methodology – it is good to identify

from the case study key business people who can play the role of the customer (or similar role).

7

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

Requirements Gathering & Specification

All the agile methodologies begin by capturing the requirements at a very high level which are
elaborated later.

• In DSDM the gathering of high level requirements begins in the Foundations Phase. They are
detailed in the Prioritised Requirements List.

• In SCRUM the requirements are contained in the Product Backlog; the format is not specified,
but they are often stories.

• In XP the requirements are captured as stories8 in the Exploration phase with the Customer.

 Prioritisation of Requirements
Requirements in agile projects are continually prioritised according to business value with a business
representative.

• In DSDM the requirements are prioritised using the MoSCoW method in the foundations phase
and throughout evolutionary development as the requirements become more detailed and refined.
The mnemonic simply means:

 M – Must have requirements

 S – Should have if at all possible

 C – Could have but not critical

 W – Won ‘t have this time, but potentially later

• In SCRUM the product owner has the responsibility, in consultation with other stakeholders, of
continually prioritising items in the Product Backlog9, ordering them from their highest to lowest
business value.

• In XP the customers place the stories in order of priority, possibly as sticky notes on a whiteboard,
in the Planning phase.

Planning Delivery to the Customer (Release/Deploy/Ship)

• In DSDM an outline of the planned releases are specified in the Release Plan in the
Foundations Phase. This gives an outline of the releases which are deployed10 to the customer
in a series of increments. Each release will contain one or more development timeboxes to which
prioritised requirements are allocated. This is followed by a deployment timebox. At the end of each
incremental deployment there is an opportunity for the customer to give feedback (shown by back
arrows on the lifecycle) into the planning process.

8 A story is a simple description of a product requirement which may be written on an index card. It is written in the customer’s own language avoiding
 any technical jargon. It might also describe bugs to be fixed and non- functional requirements.
9 This is said to be ‘living’.
10 Deployment is the physical act of putting what has been assembled (the release) out into operational use. Several incremental solutions resulting
 from the timebox development in the previous phase are assembled into a single release, reviewed/checked as a whole, and deployed (put into the
 live business environment). It also includes such things as performing changeover, training users, setting up data and providing documentation and
 support to end-users.

8

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

• In SCRUM a release plan is not specifically shown on the lifecycle as each developmental sprint
creates a ‘potentially shippable product’ which can be shipped right away or held back and
grouped with other sprints depending on what the product owner wants.11 A subset of the items in
the product backlog that can be fitted into a sprint are selected from the top of the product backlog
for sprint planning.

• In XP the focus is on continuous small releases to the customer at frequent intervals. These
releases are planned in the Planning Phase12 (or game). The developer estimates the cost/effort for
each story depending on the difficulty of the story. The customer agrees on which ones to include
in a release based on business value. The release plan may simply be a set of user stories on sticky
notes stuck on a whiteboard and organised into releases, ordered by priority. Stories from the release
are selected for the forthcoming iteration.

 Planning the Work in the Time Window
The requirements/features selected for the timebox/iteration/sprint are often broken into simpler
development tasks. The duration of each task is estimated to confirm everything can be fitted in the
timebox/sprint/iteration.

• In DSDM the timebox should have a mix of Must haves, Should haves and Could haves.

• In SCRUM the subset of items from the product back log selected for development is called the
sprint backlog. Sprints last about 30 days.

• In XP this breakdown into tasks takes place in the Planning phase. Iterations last 1-3 weeks.

Executing the Work in the Time Window
Each day the solution development team/programmers select tasks to complete each day ensuring they
work at a sustainable pace. The execution involves many elements of the software development lifecycle
including the analysis, design, code and test of features in a daily iterative cycle.

The cycle begins with the daily stand up, also called the SCRUM. In this meeting (15 minutes long,
same place, same time) everyone stands up to help keep the discussion short. They ask three things:
What have I done? What am I going to do? What problems do I have?

• In DSDM the ability to leave out requirements based on MoSCoW prioritisation, reducing scope,
helps to ensure that the project keeps on time and to budget.

• The execution is said to be completed in SCRUM when it is ‘done’ in other words when there is a
potentially shippable product increment. This definition of ‘done’ usually means that features have
at a minimum been designed, built, tested and documented but the definition of ‘done’ could be
more stringent if the customer desires;

• XP goes further and says the work is complete when until the code passes customer acceptance
tests.

11 Release planning could be performed by simply grouping the items in the product backlog into releases.
12 Planning in XP may be separated into release and iteration planning in the planning game.

9

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

Note:

• XP is a methodology that is specific for software projects (unlike SCRUM and DSDM that can be
used for any type of project). It specifies 12 practices some of which are specifically related to
software engineering and are often adopted by other methodologies: Pair Programming13 [two
programmers, one task, one workstation]; Planning Game [planning meeting for releases and
iterations once per iteration]; Test-Driven Development [unit tests written before coding]; Whole
Team [customer uses system and co-located with software development team]; Continuous
Integration [always work on latest version; upload code every few hours]; Refactoring [make
architecture simpler and improve design]; Small Releases [frequent releases of live functionality];
Coding Standards [consistent style and format for source code]; Collective Code Ownership
[everyone jointly responsible for code]; Simple Design [refactor when possible to make code
simpler]; System Metaphor [story describing how system works]; Sustainable Pace [software
developers should not work more than 40 hours a week] .

• Burndown charts are used to monitor/track progress showing how much work is left to do against
time.

Review of the Work in the Time Window
At the end of a timebox/iteration/sprint the working product is demonstrated to the Business
Representative who inspects it to see if the requirements have been fulfilled.

• In SCRUM there are two specific reviews:

• Sprint Review: In this review meeting the PRODUCT/SYSTEM is reviewed checking what has been
done/not done. Everyone attends this meeting.

• Sprint Retrospective: in this review the PROCESS that created the product/system is reviewed. The
software development team including the Scrum Master attends this meeting.

13 One is driver in control of the keyboard and mouse; the other is the navigator who watches the driver implementing, identifies defects and gives ideas;
swap over. Benefits: higher quality code, faster, more enjoyable, more confidence in work.

10

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

Applying Methodologies
When considering which methodology to apply we
should consider:

• skills of the Software Development Team (can
they cope with evolving prototypes? do they
have knowledge of the methodologies used?);

• nature of the user requirements (clear/
ambiguous/changing and volatile?);

• technology used to build the solution (is it new
or well established?);

• problem area covered (is it for an existing
well established manual system or novel
application?)

• proposed system complexity (routine cookie-
cutter solutions do not apply) and size;

• need for reliability/safety/security;

• importance of schedule visibility;

• project timescales;

• required documentation (e.g. in a highly
regulated industry).

Some guidelines for when use these methodologies
are presented in the table below:

Methodology Guidelines
Waterfall requirements are unambiguous, clear and unchanging (these may be small

projects) and therefore can be described in detail at an early stage of development
(for example a system which automates an existing manual system); team
members are inexperienced as they might find the agile methodologies more
difficult to understand; the business is well understood and the technology
used to build the solution is well established; where there is a requirement for
formal approval in a regulated industry and detailed documentation is required;
large scale projects with clear unchanging requirements unsuitable for agile
development due to the size of the teams requiring a lot of communication across
distributed teams; where reliability is critical (medical/missile control).

RAD requirements of the system are unknown or uncertain and difficult to explain and
are rapidly changing; it is not possible to define requirements accurately ahead
of time as the business environment is rapidly changing/volatile; the technology
used to build the system is new or the system being employed is highly
innovative; team members are skilled to cope with evolving prototypes; developers
are skilled in the use of advanced tools; timescale is short; not for critical systems
like mission- control; small-medium sized projects.

 DSDM requirements can be defined for project at a high level initially; standalone
applications; major use can be made of pre-existing class libraries (APIs);
performance/reliability is not critical; the required technology is more than a year
old; the business would benefit from early delivery of a partial solution; no complex
algorithms; main functionality visible at the user interface so users can interact
with the prototypes; organisation which benefits from project management
practices; projects with tight timescales and budgets where MoSCoW prioritisation
can help by reducing project scope; broad range business representatives available
for business roles; new-product development and enhancing existing products with
innovative new features keeping businesses competitive; good for projects with
strict budgets and timescales as MoSCoW prioritisation quite effective at reducing
scope.

11

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

SCRUM the developmental phases in SCRUM are very similar to DSDM and can be simply
slotted into DSDM. SCRUM is therefore suitable for similar types of project. It does
have a significant difference in the way that requirements are prioritised; DSDM
uses MoSCoW rather than ‘done’ which may give DSDM the edge if there is a strict
budget and time deadline; SCRUM is useful instead of DSDM when the organisation
uses another project management system into which they want to slot an agile
methodology rather than using the DSDM project management approach; another
difference of course are the roles which may map better to the organisational
structure of the business.

XP when requirements are constantly changing or not fully known up front - risky
projects with dynamic requirements where detailed planning is not possible;
small project teams working from the same site (2 – 10 people) as communication
intense and rapid feedback required; highly motivated, stable and experienced
teams - there are a lot of software engineering practices and automated tools
needed for testing; needs clear communication and feedback from customer who
is on-site and fully committed – must be able to be released from usual work
in business; automated testing tools are available; good for short time scales
– do the simplest thing just to pass acceptance testing; software projects only;
frequent deliveries are preferred and the project can be broken down into very
small increments for release; not for large mission critical applications; not for
large projects as lack of analysis and design makes coordination difficult across
distributed teams.

Questions

1. Describe three reasons a methodology is used for the software development process.

1.

2.

3.

12

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

2. Provide two advantages and two disadvantages when applying the following methodologies for the
development of different types of software projects.

Methodology Advantage Disadvantage
Waterfall 1.

2.

1.

2.

RAD 1.

2.

1.

2.

DSDM 1.

2.

1.

2.

SCRUM 1.

2.

1.

2.

XP 1.

2.

1.

2.

13

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

3. Suggest which methodology would be the most suitable for the following projects. Justify your
selection.

Project Suggested Methodology Justification
A system for the Electoral
Office in Northern Ireland which
maintains a register of voters
including those that are postal
and proxy, and prints poll cards
and ballot papers.

Uses novel deep learning
technology which classifies
types of cancer using images of
tumour sections from pathology
departments in the hospital. Team
is composed of highly qualified
and experienced programmers
and experts with research degrees
in the deep learning algorithms.

A pharmaceutical laboratory
management system which
stores records of all clinical trial
experiments for new drugs.

A 3D virtual reality chemistry
app for an e-learning business
which must embrace the high
expectations of learners who are
used to embracing the most up-
date technology online especially
game playing.

An ordering system for a
restaurant that is struggling to
cope with demand.

A system for a UK wide hotel
chain which includes booking of
facilities and room, equipment
hire and a shop.

An online payment and booking
system for a local campsite.

14

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

4. Describe one activity that each role performs in the lifecycle of that particular methodology.

Methodology Role Activity
Waterfall Customer/User

Analyst

Developer

RAD Customer/User

Analyst

Developer

DSDM Business Sponsor

Business Visionary

Business Ambassador

Project Manager

Team Leader

Business Analyst

Solution Developer

SCRUM Product Owner

Scrum Master

Development Team

XP On-site Customer

Programmer

Coach

Tracker

15

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

5. Explain the following tools or techniques, giving examples of how they benefit the development process
and how they might be used in a specific methodology.

Tools/Techniques Usage Benefit
Evolutionary Prototyping

Throwaway Prototyping

Timeboxing

Facilitated Workshops

MoSCoW prioritisation

Daily Stand-Up

Pair Programming

User Stories

Reviews & Retrospectives

Sustainable pace

6. Explain the difference between incremental and iterative, giving examples of how it is implemented in
various methodologies, and the benefits it brings to the business.

7. Discuss the use of various kinds of prototyping throughout the development lifecycle and their
advantage and disadvantages of using them for particular types of software development projects.

16© CCEA 2019

FACTFILE: GCE SOFTWARE SYSTEMS DEVELOPMENT / SYSTEMS METHODOLOGIES

On-Line Resources
• DSDM Lifecycle

• XP Lifecycle

• SCRUM lifecycle

• User stories

• User stories grouped for release

• Iterative versus Incremental

• SCRUM Video

• Increments and Timeboxes

• MoSCoW (sticky notes)

• SCRUM sprint retrospective

• Burndown chart

• SCRUM ACDT iterations

• Iterations and Increments

• DSDM Timeboxes and Depolyment – how iterations and increments can be related.

