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1 An engineer wishes to know roughly how much water is in a drainage channel. 
Fig. 1 below shows the cross section of the channel.

4 

Fig. 1

 The drainage channel is straight.
 It is 4 m wide and 500 m long.
 The depth d metres at a distance s metres from one bank is shown in the table below.

s 0 1 2 3 4
d 1.6 2.4 3.8 5.0 3.7

 Use Simpson’s Rule to find an approximate area of the cross section and hence the 
approximate volume of water in the drainage channel.

 [You may assume that the cross section’s area is constant.] [5]
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2 (a) Solve the equation 
 | 5x – 1 | = 8 [4]
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 (b) Simplify

     
x2 – 9

4x2 – 16x − 20        ÷  2x2 + 7x + 3
4x − 20  [5]
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3 Using the binomial theorem, expand

 (1 + 2x)−3

 in ascending powers of x, up to and including the term in x3 [5]
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4 (a) The graph of the function y = f(x) is sketched in Fig. 2 below.

(2, 2)
y
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2

Fig. 2

  On the axes below, sketch the graphs of

  (i) y = 4 + f(–x) [2]

y

x

  (ii) y = 3f(x – 1) [2]
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x
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 (b) Write

 
6x3 – 3x2 + 3x – 23

(2x – 3)(x + 1)  

  in partial fractions.  [8]
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5 (a) Prove that
cot  θ + tan  θ ≡ sec  θ cosec  θ

  [5]
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 (b) Solve
2sec2  θ – 5tan  θ = 0

  for 0 G H I J θ G H I J  π [4]
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6 (a) A curve is defined by the parametric equations

x = cot  θ – 2      y = 6sin  θ + 1

  (i) Find the Cartesian equation of this curve. [5]
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  (ii) State the equation of the asymptote to this curve. [1]

 
 
 

 (b) On the axes below, sketch the graph of   y = cosec  x  for  –π G H I J x G H I J π [2]

y

x
–π π



*20AMC3114*

*20AMC3114*

11787

7 (a) (i) Differentiate   5x sec  x [3]
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  (ii) Differentiate   e4x

cos 3x [5]
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 (b) Find the gradient of the tangent to the curve

y = ln    1 + sin x√

at the point where x = π [5]
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8 (a) Find

∫ tan2
  x + 1 + 3

2x  
– 5e–xdx

[5]
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 (b) The entrance to a ghost train ride at an amusement park can be modelled as part 
of the area bounded by the curve

y = 2sin 6x

  and the x-axis, as shown in Fig. 3 below.

y

1

Fig. 3

x

  The shaded area is to be painted.

  Find this area. [9]
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